International Relations 101: War as a Bargaining Problem

William Spaniel

http://wjspaniel.wordpress.com/pscir106/
Parallel: Lawsuit

• A man trips and falls in your store and sues you for negligence.
Parallel: Lawsuit

• A man trips and falls in your store and sues you for negligence.

• Your lawyer and his lawyer agree on the following:
 – There is a 60% chance the lawsuit will be successful.
 – If he wins, you will have to pay him $40,000.
 – Going to court will cost each of you $10,000 in lawyers fees.
Possible Resolutions

1. Either you or him concede immediately.
3. You let the court decide the matter.
Possible Resolutions

1. Either you or him concede immediately.
3. You let the court decide the matter.
 - How should we expect this matter to be resolved?
Possible Resolutions

1. Either you or him concede immediately.
3. You let the court decide the matter.
Possible Resolutions

1. Either you or him concede immediately.
3. You let the court decide the matter.
 - Your expected payoff:
 - \((-40,000)(0.6) - 10,000 = -34,000\)
Possible Resolutions

1. Either you or him concede immediately.
3. You let the court decide the matter.
 • Your expected payoff:
 • \((-40,000)(.6) - 10,000 = -34,000\)
 • His expected payoff:
 • \((40,000)(.6) - 10,000 = 14,000\)
Possible Resolutions

1. Either you or him concede immediately.
3. You let the court decide the matter.
Possible Resolutions

1. Either you or him concede immediately.
 - If you concede, you lose $40,000.
 - If he concedes, he receives nothing.

3. You let the court decide the matter.
Possible Resolutions

1. Either you or him concede immediately.
 - If you concede, you lose $40,000.
 - If he concedes, he receives nothing.
 - Each would rather go to court than concede.

3. You let the court decide the matter.
Possible Resolutions

3. You let the court decide the matter.
Possible Resolutions

 - A settlement x is better for you than court if $x < $34,000.
 - A settlement x is better for him than court if $x > $14,000.
 - Therefore, any settlement offer between $14,000 and $34,000 is better for both parties than court!

3. You let the court decide the matter.
Conclusion

• Settlement should be the result!
But This Is Just Like War...

- Wars produce a winner and a loser, perhaps probabilistically.
- Fighting is costly because it kills people and destroys things.
But This Is Just Like War...

- Wars produce a winner and a loser, perhaps probabilistically.
- Fighting is costly because it kills people and destroys things.
- So why can’t two states settle matters off the battlefield?
But This Is Just Like War...

- Wars produce a winner and a loser, perhaps probabilistically.
- Fighting is costly because it kills people and destroys things.
- So why can’t two states settle matters off the battlefield?
 - We call such a reason a “rationalist explanation for war.”
Big question: Can war be mutually beneficial?
Crisis!

• Venezuela discovers an oil deposit worth $80 billion.
Crisis!

- Venezuela discovers an oil deposit worth $80 billion.
- But Colombia hears about this and declares the oil deposit to be on its side of the border.
Crisis!

- Venezuela discovers an oil deposit worth $80 billion.
- But Colombia hears about this and declares the oil deposit to be on its side of the border.
- The sides call in their militaries and prepare for war.
Venezuela’s Perspective

- Venezuela will win the war (and $80 billion in oil) 60% of the time.
- Cost of death, destruction, and lost oil: $12 billion.
Colombia’s Perspective

• Colombia will win the war (and $80 billion in oil) 40% of the time.
• Cost of death, destruction, and lost oil: $15 billion.
Interactive Question

• Is war inevitable between these two countries?
Venezuela’s Needs

• Expected payoff from war:
 \((80)(.6) - 12 = 36\)

• Venezuela must receive $36 billion to be satisfied.
Colombia’s Needs

- Expected payoff from war:
 \[(80)(.4) - 15 = 17\]
- Colombia must receive $17 billion to be satisfied.
A Rationalist Explanation for War?

• Both countries have positive expected payoffs from fighting.
 – So war is rational for both parties.
A Rationalist Explanation for War?

• Both countries have positive expected payoffs from fighting.
 – So war is rational for both parties. Right?
Bargaining

• War is **not** rational here.
• Venezuela’s and Colombia’s demands sum to $53 billion.
 – But there’s $80 billion in oil revenue to go around!
 – Where did the other $27 billion go?
Bargaining

• War is **not** rational here.

• Venezuela’s and Colombia’s demands sum to $53 billion.
 – But there’s $80 billion in oil revenue to go around!
 – Where did the other $27 billion go?
 • The costs of war ($15 billion and $12 billion) ate it up.
A Better Resolution

• Let x be Venezuela’s share of the settlement.
• Then x satisfies Venezuela if $x > 36$.
• Then x satisfies Colombia if $80 - x > 17$, or $x < 53$.
A Better Resolution

• Let x be Venezuela’s share of the settlement.
• Then x satisfies Venezuela if $x > 36$.
• Then x satisfies Colombia if $80 - x > 17$, or $x < 63$.
 – Therefore, x is mutually satisfactory if $36 < x < 63$
Conclusion

• Any settlement that gives $36 billion but no more than $63 billion to Venezuela is mutually preferable to war.
 – Such settlements exist.
 – Bargaining is mutually preferable to war.
War’s Inefficiency Puzzle

• Why do states sometimes choose to resolve their differences with inefficient fighting when bargaining, in theory, leaves both better off?
War’s Inefficiency Puzzle

- Was this a quirk with the payoffs for Venezuela and Colombia?
The Model

- Two states: A and B.
The Model

• Two states: A and B.
• Bargain over an object worth 1.
 – This 1 is 100% of the good—whether it is $80 billion in oil, 16 square miles of land, or whatever.
 – Object is infinitely divisible.
The Model

- Two states: A and B.
- Bargain over an object worth 1.
- p_A is the probability A wins a war.
- p_B is the probability B wins a war.
 - No draws, so $p_A + p_B = 1$
The Model

• If the states fight a war, they pay costs $c_A > 0$ and $c_B > 0$.
 – These costs reflect absolute costs (how many people will die) and “resolve” (how much the state cares about the issue).
The Model

• If the states fight a war, they pay costs $c_A > 0$ and $c_B > 0$.
 – These costs reflect absolute costs (how many people will die) and “resolve” (how much the state cares about the issue).
 – The costs can take any functional form, as long as they are positive.
The Model

• If the states fight a war, they pay costs $c_A > 0$ and $c_B > 0$.

• Question: Is bargaining always an effective means of resolving the dispute?
A’s Peace Constraint

• Let x be A’s share of the bargained settlement.
• A is satisfied if:
 $$x \geq p_A(1) - c_A$$
A’s Peace Constraint

• Let x be A’s share of the bargained settlement.
• A is satisfied if:
 \[x \geq p_A(1) - c_A \]
 \[x \geq p_A - c_A \]
B’s Peace Constraint

- $1 - x$ is B’s share of a peaceful settlement.
- B is satisfied if:
 $$1 - x \geq p_B(1) - c_B$$
B’s Peace Constraint

• $1 - x$ is B’s share of a peaceful settlement.

• B is satisfied if:

 $1 - x \geq p_B(1) - c_B$

 $1 - x \geq p_B - c_B$

 $x \leq 1 - p_B + c_B$
Is Peace Possible?

• A is satisfied if: \(x \geq p_A - c_A \)
• B is satisfied if: \(x \leq 1 - p_B + c_B \)
Is Peace Possible?

- A is satisfied if: $x \geq p_A - c_A$
- B is satisfied if: $x \leq 1 - p_B + c_B$
- x is mutually satisfactory if:
 $$p_A - c_A \leq x \leq 1 - p_B + c_B$$
Is Peace Possible?

• A is satisfied if: \(x \geq p_A - c_A \)
• B is satisfied if: \(x \leq 1 - p_B + c_B \)
• \(x \) is mutually satisfactory if:
 \[p_A - c_A \leq x \leq 1 - p_B + c_B \]
• Such an \(x \) exists if:
 \[p_A - c_A \leq 1 - p_B + c_B \]
Is Peace Possible?

- A is satisfied if: \(x \geq p_A - c_A \)
- B is satisfied if: \(x \leq 1 - p_B + c_B \)
- \(x \) is mutually satisfactory if:
 \[
 p_A - c_A \leq x \leq 1 - p_B + c_B
 \]
- Such an \(x \) exists if:
 \[
 p_A - c_A \leq 1 - p_B + c_B
 \]
 - \(p_A + p_B = 1 \)
 - \(p_B = 1 - p_A \)
Is Peace Possible?

- A is satisfied if: \(x \geq p_A - c_A \)
- B is satisfied if: \(x \leq 1 - p_B + c_B \)
- x is mutually satisfactory if:
 \[
 p_A - c_A \leq x \leq 1 - p_B + c_B
 \]
- Such an x exists if:
 \[
 p_A - c_A \leq 1 - (1 - p_A) + c_B
 \]
Is Peace Possible?

- A is satisfied if: \(x \geq p_A - c_A \)
- B is satisfied if: \(x \leq 1 - p_B + c_B \)
- \(x \) is mutually satisfactory if:
 \[
 p_A - c_A \leq x \leq 1 - p_B + c_B
 \]
- Such an \(x \) exists if:
 \[
 p_A - c_A \leq 1 - (1 - p_A) + c_B \\
 p_A - c_A \leq p_A + c_B \\
 c_A + c_B \geq 0
 \]
Conclusions

• Peace is possible.
• But how do we interpret this result?
 – Geometric model will help us understand what’s going on here.
The Model

- Two states: A and B.
The Model

- Two states: A and B.
- Bargain over an object worth 1.
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A’s Capital</td>
<td>B’s Capital</td>
</tr>
</tbody>
</table>
The Model

- Two states: A and B.
- Bargain over an object worth 1.
- p_A is the probability A wins a war.
- $1 - p_A$ is the probability B wins a war.
A’s Expected Share of Territory

B’s Expected Share of Territory

0
A’s Capital

\(p_A \)

1
B’s Capital
The Model

• If the states fight a war, they pay costs $c_A > 0$ and $c_B > 0$.
A’s Expected Share of Territory

0
A’s Capital

$p_A - c_A$
A’s Costs Of War

p_A

1
B’s Capital
A’s Expected War Payoff

\[p_A - c_A \]

A’s Costs Of War

0
A’s Capital

1
B’s Capital
A’s Expected War Payoff

A’s Costs Of War

Settlements A Prefers to War

0
A’s Capital

$p_A - c_A$

p_A

1
B’s Capital
A’s Capital

B’s Capital

0

A’s Capital

B’s Expected Share of Territory

$\boldsymbol{p_A}$

$\boldsymbol{p_A + c_B}$

B’s Costs Of War

1

B’s Capital
A’s Capital

B’s Capital

0

p_A

$p_A + c_B$

1

B’s Expected War Payoff

B’s Costs Of War

A’s Capital

B’s Capital
Settlements B Prefers to War

B’s Expected War Payoff

0
A’s Capital

p_A

B’s Costs Of War

p_A + c_B

1
B’s Capital
Settlements B Prefers to War

$\text{A's Costs Of War} = p_A - c_A$

Settlements A Prefers to War

$\text{B's Costs Of War} = p_A + c_B$
A’s Expected War Payoff

Bargaining Range

B’s Expected War Payoff

0
A’s Capital

\(p_A - c_A \)
A’s Costs Of War

\(p_A \)

\(p_A + c_B \)
B’s Costs Of War

1
B’s Capital