The Goldilocks Principle of Civil War Peacekeeping

William Spaniel
Burcu Savun
Dong Ju Lee

Department of Political Science
University of Pittsburgh

November 10, 2018
Peacekeeping is an effective conflict resolution tool:

- Increases the durability of peace after civil wars (e.g., Fortna 2008; Ruggeri et al. 2017)
- Reduces the number of deaths during and after the war (e.g., Hultman et al. 2013, 2014; Bove and Ruggeri 2015)
The larger the size of a mission, the easier it is for PK forces to separate combatants, create buffer zone, and deter spoilers (Ruggeri et al. 2017)

Increasing the physical capacity of peacekeeping sends a signal of third party’s resolve and willingness to guarantee peace (Hultman et al. 2014)
Existing theories of peacekeeping focus on how they resolve mechanisms for war in isolation.

But if multiple mechanisms could cause war, does the prescription to resolve one make another worse?
Increasing PK deployments ameliorates commitment problems

But it exacerbates information problems

Limited interventions may be better than larger ones, even without a budget constraint
1) Nature draws G as resolved or unresolved

2) T selects size of peacekeeping force

3) R chooses to fight or not

4) If not, R makes a demand out of G

5) G accepts or rejects
If R does not fight immediately, power shifts favorably to G

Larger deployments reduce the shift and make war costlier for G

T wants to minimize war and pays a strictly increasing cost for larger deployments
The Commitment Problem

In the absence of a large peacekeeping deployment, R prefers inefficient war today to disadvantageous peace later.

Larger deployments \rightarrow R \text{ wins with greater probability and G pays higher costs} \rightarrow \text{commitment problem mitigated}
For any deployment quantity, R faces a risk-return tradeoff

Unresolved type internalizes each unit of costs at a higher rate than resolved type

Larger deployments ⇒ greater peace premium for safe offers ⇒ information problem exacerbated
What Happens?
More Isn’t Always Better
No-Win Situation

Peacekeeping Deployment (n)

Change in Power (Δ)

William Spaniel Burcu Savun Dong Ju Lee
Goldilocks Principle

Commitment Problem

Change in Power (Δ)

Peacekeeping Deployment (n)

What Happens?
More Isn’t Always Better
No-Win Situation

Introduction
The Model
Results
Conclusion

William Spaniel Burcu Savun Dong Ju Lee

Goldilocks Principle
Peacekeeping Deployment (n) vs. Change in Power (Δ)

- **Commitment Problem**
- **Information Problem**
- **Peace**

Goldilocks Principle
Peacekeeping Deployment (n) vs. Change in Power (Δ)

- **Peace**
- **Information Problem**

- **What Happens?**
 - More Isn’t Always Better
 - No-Win Situation

Goldilocks Principle

- Commitment Problem
- Information Problem

- William Spaniel
- Burcu Savun
- Dong Ju Lee
- Goldilocks Principle
Introduction

The Model

Results

Conclusion

What Happens?

More Isn’t Always Better

No-Win Situation

Peacekeeping Deployment (n)

Commitment Problem

Change in Power (Δ)
Larger interventions reduce commitment problems

But they also exacerbate information problems

Strategic interventions need to balance the two

May be impossible reduce the probability of war to 0
williamspaniel.com

burcusavun.com